Syllabus Representation theory of the symmetric group - 80624
עברית
 Students needing academic accommodations based on a disability should contact the Center for Diagnosis and Support of Students with Learning Disabilities, or the Office for Students with Disabilities, as early as possible, to discuss and coordinate accommodations, based on relevant documentation. For further information, please visit the site of the Dean of Students Office. Print close PDF version Last update 05-04-2020 HU Credits: 2 Degree/Cycle: 2nd degree (Master) Responsible Department: Mathematics Semester: 2nd Semester Teaching Languages: English and Hebrew Campus: E. Safra Course/Module Coordinator: Evgeny Strahov Coordinator Email: strahov@math.huji.ac.il Coordinator Office Hours: Teaching Staff: Prof Evgeny Strahov Course/Module description: The course will include the following principal topics: 1. General properties of representations of finite groups. 2. General properties of characters of finite groups. 3.Conjugacy classes in the symmetric group and combinatorics of Young diagrams. 4. Irreducible representations of the symmetric group over the complex field. 5. Characters of irreducible representations of the symmetric group over the complex field Course/Module aims: 1. To learn general properties of representations and characters of finite groups. 2. To learn classical combinatorics related to the symmetric group. 3. To learn explicit construction of irreducible representations of the symmetric group. 4. To learn derivation of formulas for the characters of irreducible representations of the symmetric group Learning outcomes - On successful completion of this module, students should be able to: At the end of the course students should know: Representation of a finite group by linear transformations of a vector space. Characters of representations of finite groups over the complex field. Irreducible representations of the symmetric group over the complex field. Formulas for the characters of irreducible representations of the symmetric group Attendance requirements(%): Teaching arrangement and method of instruction: Seminar Course/Module Content: The course will include the following principal topics: 1. General properties of representations of finite groups. 2. General properties of characters of finite groups. 3.Conjugacy classes in the symmetric group and combinatorics of Young diagrams. 4. Irreducible representations of the symmetric group over the complex field. 5. Characters of irreducible representations of the symmetric group over the complex field Required Reading: B. Sagan The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Additional Reading Material: Course/Module evaluation: End of year written/oral examination 0 % Presentation 0 % Participation in Tutorials 0 % Project work 100 % Assignments 0 % Reports 0 % Research project 0 % Quizzes 0 % Other 0 % Additional information: Print