

The Hebrew University of Jerusalem Syllabus

Advanced analytical mechanics - 77966

Last update 05-03-2019

HU Credits: 3

<u>Degree/Cycle:</u> 2nd degree (Master)

Responsible Department: Physics

Academic year: 0

Semester: 2nd Semester

<u>Teaching Languages:</u> Hebrew

Campus: E. Safra

Course/Module Coordinator: Dr. Ido Barth

Coordinator Email: ido.barth@mail.huji.ac.il

Coordinator Office Hours: By appointment

Teaching Staff:

Dr. Ido Barth

Course/Module description:

Advanced course in analytical mechanics

Course/Module aims:

- 1. To deepen the theoretical understanding of nonlinear multidimensional Hamiltonian systems.
- 2. To provide applicable knowledge in perturbation theories and in numerical methods for dynamical systems.

<u>Learning outcomes - On successful completion of this module, students should be</u> able to:

- 1. To analyze Hamilonian systems by the means of action-angle variables.
- 2. To identify symmetries, topology, constants of motion, and adiabatic invariants.
- 3. To use perturbation theories for solving stationary, dynamical, and resonant problems.
- 4. To write a symplectic scheme for numerical simulations of dynamical systems.

Attendance requirements(%):

 \mathcal{C}

Teaching arrangement and method of instruction: Lecture, exercise, and homework

Course/Module Content:

- 1. A review of the formalisms of Lagrange, Hamilton, and Hamilton-Jacobi.
- 2. Dynamics in phase space, Liouville theorem, and Poisson brackets.
- 3. The variational principle, canonical transformations, action-angle variables, adiabatic invariants, and phase space topology.
- 4. Integrability, Symmetry, and constants of motion.
- 5. Canonical perturbation theory, time dependent perturbation theory, averaging methods.
- 6. Nonlinear oscillator, nonlinear resonance, autoresonance, three wave interaction, and parametric resonance.
- 7. Chirikov resonance-overlap criterion, Arnold diffusion, nearly integrable systems, KAM theorem, Poincare map, Stochasticity, and chaos.
- 8. Symplectic schemes for numerical simulations of dynamical systems.

Required Reading:

non

Additional Reading Material:

- H. Goldstein, Classical mechanics, (Pearson 2013).
- L.D. Landau and E.M. Lifshitz, Mechanics, (Addison-Wesley 1960).
- A.J. Lichtenberg and M.A. Lieberman, Regular and stochastic motion, (Springer 1983).
- R.Z. Sagdeev, D.A. Usikov, and G.M. Zaslavsky, Nonlinear physics from the pendulum to turbulence and chaos, (Harwood 1988).

Course/Module evaluation:

End of year written/oral examination 0 %
Presentation 0 %
Participation in Tutorials 0 %
Project work 100 %
Assignments 0 %
Reports 0 %
Research project 0 %
Quizzes 0 %
Other 0 %

Additional information:

non