

The Hebrew University of Jerusalem

Syllabus

SOLID STATE PHYSICS - 77602

Last update 18-08-2016

HU Credits: 4

<u>Degree/Cycle:</u> 1st degree (Bachelor)

Responsible Department: physics

Academic year: 0

Semester: 2nd Semester

<u>Teaching Languages:</u> Hebrew

Campus: E. Safra

Course/Module Coordinator: Dr. Hadar Steinberg

Coordinator Email: hadar@phys.huji.ac.il

Coordinator Office Hours: By appointment

Teaching Staff:

Dr. Hadar Steinberg Mr. Doron Grossman

Course/Module description:

The course will cover basic and advanced topics in Solid State Physics

Course/Module aims:

The students will be familiar with basic concepts in solid state physics: Conductance in metals, crystal structure, electronic band structure and phonons.

<u>Learning outcomes - On successful completion of this module, students should be</u> able to:

The students will be familiar with basic concepts in solid state physics: Conductance in metals, crystal structure, electronic band structure and phonons.

Attendance requirements(%):

_

Teaching arrangement and method of instruction: Frontal lectures, TA hour, weekly exercise.

Course/Module Content:

- 1. Background
- 2. Electronic transport in metals: The free electron model. The conductivity tensor. Hall Effect.
- 3. Crystal structure: Periodic structure, Bravais Lattice, reciprocal lattice.
- 4. The free electron gas: Density of States.
- 5. Electronic band structure: Bloch theorem; The nearly free electron approximation, energy bands.
- 6. Electronic band structure: Tight binding approximation.
- 7. Probing the Fermi Surface: de-Haas van-Alfven and Shubnikov-de-Haas effects
- 8. Phonons: Acustic and optical modes. Heat capacity.
- 9. Low dimensional systems: Quantum Hall Effect, transport in ballistic quantum wires.
- 10. Graphene.
- 11. Screening: Thomas Fermi theory.
- 12. Superconductivity and Magnetism.
- 13. Semiconductors.

Required Reading:

The course will be based on the following text books:

- 1. Kittel
- 2. Ashcroft & Mermin

Additional Reading Material:

Will be given during the course

Course/Module evaluation:

End of year written/oral examination 80 % Presentation 0 % Participation in Tutorials 0 % Project work 0 % Assignments 10 % Reports 0 % Research project 0 % Quizzes 10 % Other 0 %

Additional information:

None