

The Hebrew University of Jerusalem

Syllabus

Optical super resolution and applications - 77308

Last update 22-11-2018

HU Credits: 2

<u>Degree/Cycle:</u> 1st degree (Bachelor)

Responsible Department: Physics

Academic year: 0

Semester: 2nd Semester

<u>Teaching Languages:</u> Hebrew

Campus: E. Safra

Course/Module Coordinator: Dr. Eilon Sherman

Coordinator Email: sherman@phys.huji.ac.il

Coordinator Office Hours: By appointment

Teaching Staff:

Course/Module description:

Light microscopy is a key experimental tool. e.g. in solid state physics and biology. The resolution of such microscopy is limited by the diffraction of light to ~half of the wavelength. Over the past decade, a revolution in the field has allowed imaging with super-resolution down to nano-meters and to single molecules. In this course, we will learn about multiple techniques of microscopy, how to break the diffraction-limit of light, and new and exciting findings that have been enabled by super-resolution techniques.

Course/Module aims:

Introduction of microscopy techniques Introduction of ways to break the diffraction limit of light Presentation of technological advancements and exciting new findings, enabled by super-resolution microscopy

<u>Learning outcomes - On successful completion of this module, students should be able to:</u>

- 1. To study in depth a topic in microscopy, with an orientation toward advanced studies in the field.
- 2. Present the topic.

Attendance requirements(%):

90

Teaching arrangement and method of instruction: Seminar: The student will give 1-2 presentations.

Course/Module Content:

The list of topics will include:

- 1. An introduction to basic concepts in microscopy
- 2. An introduction to various microscopy configurations, including near or far fields, wide or narrow fields, and more.
- 3. Approaches to breaking the diffraction limit of light, including: Imaging single molecules imaging fluctuations
 Structured illumination
 Stimulated emission-depletion
 Near-field approaches

- 4. Related microscopy approaches, inc. electron microscopy, AFM, etc.
- 5. For each method, we will introduce the latest technological advancements and related new discoveries

Required Reading:

Multiple research studies that will be presented at the beginning of the course

Additional Reading Material:

•

Grading Scheme:

Additional information:

None