

The Hebrew University of Jerusalem

Syllabus

NUMERICAL METHODS - 71980

Last update 25-01-2015

HU Credits: 3

<u>Degree/Cycle:</u> 2nd degree (Master)

Responsible Department: Agricultural Economics

Academic year: 1

Semester: 2nd Semester

<u>Teaching Languages:</u> Hebrew

Campus: Rehovot

Course/Module Coordinator: J. Rivlin

Coordinator Email: Judith.Rivlin@mail.huji.ac.il

Coordinator Office Hours: Sunday 14:15-15:00

Teaching Staff:

Dr. Judith Rivlin

Course/Module description:

Numerical Solution of Nonlinear Equations; Interpolation; Splines; Numerical Solution of Linear Equations; Eigenvalues and Eigenvectors. Numerical Differentiation and Integration.

Course/Module aims:

To introduce the difference between an analytical and a numerical solution of a problem. To present principal methods to solve numerically classical problems in calculus such as: Solution of a nonlinear equation, Approximation of a function by a piecewise polynom, Solution of a linear system of equations. Calculation of derivatives and integrals numerically

<u>Learning outcomes - On successful completion of this module, students should be able to:</u>

To solve numerically a nonlinear equation. To approximate a function by a piecewise polynom, To solve a linear system of equations. To Calculate derivatives and integrals numerically

Attendance requirements(%):

100

Teaching arrangement and method of instruction: Lecture and exercises

Course/Module Content:

Solution of a nonlinear equation: The Bisection, Newton, Secant and Fixed Point methods.

Interpolation: The interpolation formulas of Lagrange, Hermite and Newton. Splines.

Solution of a linear system of equations: Gaussian Elimination method, Pivoting methods. Iterative methods: Jacobi, Gauss-Seidel, S.O.R. Stabitity of a matrix. Eigenvalues and Eigenvectors.

Numerical Differentiation. Stability.

Numerical Integration: Newton Cotes, Gauss.

Required Reading:

Lecture summaries; Numeric methods- Rivlin, J.-Rehovot 2015

<u>Additional Reading Material:</u>

Burden & Faires- Numerical Analysis-7th edition (2001).

Course/Module evaluation:

End of year written/oral examination 90 % Presentation 0 % Participation in Tutorials 0 % Project work 0 % Assignments 10 % Reports 0 % Research project 0 % Quizzes 0 % Other 0 %

Additional information:

The course is useful for anyone who solves problems with a computer. We will learn basic methods for solving various mathematical problems, including: non-linear equation solving, approximation of functions with polynomials, solving systems of linear equations and so on ...

The software used in the course is a software Maple. At same time there will be the option to work with the software MATHEMATICA or MATLAB for those who are interested.