

## The Hebrew University of Jerusalem

Syllabus

## COMPUTER ARCHTECTURE - 67200

Last update 06-08-2019

<u>HU Credits:</u> 5

Degree/Cycle: 1st degree (Bachelor)

Responsible Department: Computer Sciences

<u>Academic year:</u> 0

Semester: 2nd Semester

<u>Teaching Languages:</u> Hebrew

<u>Campus:</u> E. Safra

Course/Module Coordinator: Ohad Falik

<u>Coordinator Email: ohadf1@cs.huji.ac.il</u>

<u>Coordinator Office Hours:</u> Sunday 13-14, Coordinate in Advance

Teaching Staff:

Mr. Ohad Falik Mr. Mr. David Freud

Course/Module description:

The course is an introduction to digital hardware design and computer architecture concepts and design. The following topics will be covered: 1. Introduction to computer Architecture : [Computer Elements, Moors' law, ISA, Performance, Amdahl law] 2. Number Representation [Integer, fix point and Floating Point – conversion, range and arithmetic]

*3. Introduction to semiconductors and transistor as switch. Building logic functions from transistors.* 

*4. Boolean algebra and combinatorial functions. Function minimization. Elementary and advanced logic functions.* 

5. Combinatorial circuits. State machine taxonomy and concepts. Sequential Circuits and memory elements (latches and flip-flops). Synthesis of state machines.

6. Timing of combinatorial and sequential circuits.

7. HW description language fundamentals

8. Introduction to processor architecture (C to assembly and binary, Van-Neumann vs. Harvard, CISC vs. RISC, architecture compatibility visible-ISA vs. mico-architectural point of views). Execution steps and MIPS Instruction set

9. MIPS Implementation: Single cycle, Multi-cycle, Pipeline (including pipeline principals and hazards). Focus points : performance estimation, trade off understanding, circuit frequency, pipeline hazard elimination), Interrupts

10. Memory hierarchy : problem, terms, taxonomy of misses, cache design, cache behavior under program examples, types of caches (direct, set-associative, fully associative).

11. Virtual Memory : why do we need virtual memory, concepts, page mapping [flat and hierarchical], problems, memory management and TLB issues.

 Modern Computer Architectures: Parallelization methods, Super pipelining, Vector Machines, Cache Coherency
Selected topics of : prediction methods, IO Operation. Course/Module aims:

*Familiarity with numbers representation methods, hardware elements and hardware design methods.* 

Understanding the principles of computer architecture and implementation of a simple processor.

Familiarity with advanced topics in architecture.

Learning outcomes - On successful completion of this module, students should be able to:

Design simple hardware systems .

Analyze systems and processors computing systems having different microarchitectures.

Analyze and make optimization to software to match different architectures. Understand the trade off of different architectural solutions.

<u>Attendance requirements(%):</u> 0

*Teaching arrangement and method of instruction: Frontal Lecture + Frontal exersize lesson, home assignemnts.* 

Course/Module Content:

 Introduction to computer Architecture : [Computer Elements, Moors' law, ISA, Performance, Amdahl law]
Number Representation [Integer, fix point and Floating Point – conversion, range and arithmetic]

*3. Introduction to semiconductors and transistor as switch. Building logic functions from transistors.* 

*4. Boolean algebra and combinatorial functions. Function minimization. Elementary and advanced logic functions.* 

5. Combinatorial circuits. State machine taxonomy and concepts. Sequential Circuits and memory elements (latches and flip-flops). Synthesis of state machines.

6. Timing of combinatorial and sequential circuits.

7. HW description language fundamentals

8. Introduction to processor architecture (C to assembly and binary, Van-Neumann vs. Harvard, CISC vs. RISC, architecture compatibility visible-ISA vs. mico-architectural point of views). Execution steps and MIPS Instruction set

9. MIPS Implementation: Single cycle, Multi-cycle, Pipeline (including pipeline principals and hazards). Focus points : performance estimation, trade off understanding, circuit frequency, pipeline hazard elimination)

10. Memory hierarchy : problem, terms, taxonomy of misses, cache design, cache behavior under program examples, types of caches (direct, set-associative, fully associative).

11. Virtual Memory : why do we need virtual memory, concepts, page mapping [flat and hierarchical], problems, memory management and TLB issues.

 Modern Computer Architectures: Parallelization methods, Super pipelining, Vector Machines, Cache Coherency
Selected topics of : prediction methods, Interrupts and IO Operation.

<u>Required Reading:</u> N.A

Additional Reading Material:

- האוניברסיטה הפתוחה – "מערכות ספרתיות"

*– Computer Architecture and Design. The Hardware / Software Interface - Hennessy & Patterson* 

- Computer Architecture a Quantitative Approach - Hennessy & Patterson

- Hennessy, J. L., and D. A. Patterson. Computer Architecture: A Quantitative

Approach, 3rd ed. San Mateo, CA: Morgan Kaufman, 2002. ISBN: 1558605967.

<u>Course/Module evaluation:</u> End of year written/oral examination 70 % Presentation 0 % Participation in Tutorials 0 % Project work 0 % Assignments 20 % Reports 0 % Research project 0 % Quizzes 10 % Other 0 % Additional information:

Minimum requirement of assignments and exam.

The Quiz will be taken into account only if higher than exam grade (in which case the exam is 80% of final grade).