

The Hebrew University of Jerusalem

Syllabus

Workshop on remedial intervention Methods - 37990

Last update 24-10-2022

HU Credits: 4

<u>Degree/Cycle:</u> 2nd degree (Master)

Responsible Department: Education

Academic year: 0

Semester: 1st Semester

<u>Teaching Languages:</u> Hebrew

Campus: Mt. Scopus

Course/Module Coordinator: vicki shemesh

<u>Coordinator Email: vickishemesh@gmail.com</u>

Coordinator Office Hours: Monday by appointment

Teaching Staff:

Ms. vicki shemesh

Course/Module description:

Adaptive teaching is based on the process of gathering information, identifying sources of power and strengthening centers for studying due consideration of analyzer building intervention program. The purpose of the workshop is to deepen the study of mathematics, the difficulties various content areas and the construction of the teaching program adapted for the needs of the student conditioned individuals with learning disabilities.

Course/Module aims:

- The student could recognize specific sources and recommendations into account Disabilities derivative that
- The student will recognize teaching programs that target diverse Account
- The student teaching program knowledge test account while identifying sources of power and difficulty of the program
- The student will learn to build a tailored treatment program
- The student will identify the degree to which the plan for teaching the student account
- The student will learn ways to deal with the difficulties of account with respect to selected content areas

<u>Learning outcomes - On successful completion of this module, students should be able to:</u>

Submission of a final paper and related tasks

Attendance requirements(%):

Presence Required

Teaching arrangement and method of instruction: Lectures, practical experience writing development and analysis methods and teaching tools

Course/Module Content:

Rate of 1-2:

Presentation of the course

Call for the construction of student profile account, perceptual and cognitive channels, recommendations tailored to teaching

Lesson 3:

Mathematics as a language - Characteristics of mathematical discourse and

dialogue profiling student has difficulty into account

Lesson 4:

Content focal account preparedness and recommendations tailored teaching

Lessons 5-6:

General aspects of teaching: What is Adaptive teaching (action) into account; Principles, different types of visual aids and adapting them to the student, teaching approaches and methods adapted Accountants exposure and critical analysis

Lessons 7-8:

Components of mathematical knowledge in relation to the profiles of students, skills and strategies of students, processes and principles in building The work plan.

Lessons 9-13:

Working main content difficulties Accountants reference types, error analysis - characteristics, product processes, media and methods of treatment.

Content: basic facts, Structure decades, word problems - sorting, classification and rating, strategies and models for teaching, language verbal and mathematical language (connections-kosher-problems).

Lesson 14:

Experience in preparing a profile of learning difficulties and special adapted work plan.

Required Reading:

1) אהרוני,ר. (2011). שיטה כה מוזרה ללמד מתמטיקה. מתוך: הארץ

https://www.haaretz.co.il/misc/1.768905

2) אהרוני, ר. (2004). חשבון להורים. הוצאת שוקן.

3) בן-יהודה, מ. (2004). ניתוח אירועי שיח כדרך להערכת לומדים מתקשים במתמטיקה וכבסיס לבניית תכנית התערבות. סוגיות בחינוך מיוחד ובשיקום, כרך 19, מס 2.

4) בן- יהודה מ., אילני ב. (2008). פיתוח החשיבה המתמטית בגיל הרך. ת"א : מכון מופת, הוראת (4 בן- יהודה מ., אילני ב. (2008). פיתוח החשיבה המתמטית בגיל הרך, עמ' 125-190.

5) בן יהודה, מ' וליכט פ.(2013).יישום מודל להתערבות מותאמת: הוראת קבוצות של לומדים עם לומדים עם מוגבלויות במערכות חינוך. חיפה: אחוה הוצאה לאור.

.(ח"מ). אח"ד מי יודע: אבחון חשבון דידקטי - מתאוריה למעשה, (ח"מ). הודה, מ' ושרוני, ו' (2011). אח"ד מי יודע: אבחון

7) ברנע, ע. (2000). לקויי למידה דיסקלקוליה ופתרון בעיות, הד החינוך, דצמבר.

8) גביש, ת. (1998). לחשוב, להבין, להצליח- פיתוח חשיבה מתמטית. קירית ביאליק: אח. (2009). המוח הגמיש. כתר. (9

10) הניק,א. רובינשטיין, א. (2008). היבטים נוירוקוגניטיביים של דיסקלקוליה התפתחותית.

11) וילאינור ס. (2008) .המוח המתבהר. ירושלים: כתר.

, זיגדון, נ. (2000). דיסקלקוליה התפתחותית: הגדרה, מאפיינים והשלכות דידקטיות. מספר חזק, 19.

```
. (1986). שיטה תבניתית גלובלית. כפר סבא: בית ברל
14) לינצ'בסקי, ל' ותובל , ח' (1992). תפקיד המודלים בהוראת החשבון - האם אמצעי ההמחשה
אכן מסייעים לתת משיגים בבניית מושגים מתמטיים? דפים 15, מכון מופת: תל אביב, עמ' 36-46.
15) מיילס,ט. מיילס, א. (עורכים). (1994). דיסלקסיה ומתמטיקה. קרית ביאליק: אח.
16) משרד החינוך (2006). תכנית לימודים המתמטיקה לכיתות א-ו בכל המגזרים. ירושלים: ת"ל.
17) משרד החינוך (תשנ"ה). תכנית לימודים בבית הספר היסודי במתמטיקה לחינוך
המיוחד. ירושלים: ת"ל.
18) משרד החינוך (תשע"ה) מסמך ההתאמות ללמידת במתמטיקה לחינוך
המיוחד. ירושלים: ת"ל.
18) נשר, פ' (2000) האם אנחנו יודעים ללמד ילדים קטנים מתמטיקה?, דברים במסיבת הספר ה-18
של "אחת שתיים ושלוש" והחוברת ה-90 של "ועוד אחת".
20) סגל,ד.(1992). קשיים ברכישת מושג המספר בגיל הגן . הד הגן ,נ"ו (ד).
21) סגל,ד. (1992). השפעת תהליכים קוגנטיביים ומטה-קוגנטיביים על ההתערבות הדידקטית בעיבוד
תכנים מתמטיים אצל ילדים בעלי צרכים מיוחדים, סוגיות בחינוך מיוחד ובשיקום, 7 (2), 45-57.
22) סגל,ד. (2009). אבחון המספרים השלמים: לכיתות א'-ד'. קריית ביאליק.אח.
.22 עצמון, צ' (2007) דיסקלקוליה-לא עושים חשבון, גלילאו, 109, 22-31
24) קורן, מ' (2001) מודל העוגה המלבנית לשברים פשוטים, מספר חזק, 2, 16-23
. המורה: (1985), קשיים בלמידת חשבון. תל-אביב :(1985)
26) קרנסטי, ר. והרכבי א. (2003).איפיוני למידה וחשיבה של תלמידים חלשים במתמטיקה. דו"ח
מסכם, המחלקה להוראת המדעים:מכון ויצמן.
.77 (27) רגב,ח., שמעוני, ש' (2000). לשוחח מתמטיקה- מדוע? למה? ואיך? על"ה 25, 77-89
28) שגב- טל, ר. גלילי, ר. (2010 ). נע ללמוד- שילוב תנועה בהוראת תכנים לימודיים. הוצאת תמה.
מכון מופת.
29) שטיינברג,ר' (1993). הכשרת מורים להוראה משמעותית של המבנה העשורי, דפים, מופת,
ירושלים.
30) שרון, ד' (1998). כלי חשיבה בסיסיים לפתרון בעיות מילוליות במתמטיקה- מדריך למורה. מכון
```

<u>Additional Reading Material:</u>

ברנקו וייס לטיפוח החשיבה ומשרד החינוך והתרבות.

s'(RTI) intervention to response of effectiveness The .(2020) .M ,Abualrub .1 model for devel-oping basic math operations among math learning disability students. An-Najah University Journal for Research-B (Humanities), 34(9), 8. Forbringer, L., & Weber, W. H. (2021). Rtl in Math: Evidence-Based Interventions.

Routledge.

- 2. . Ambrose R. C. (2009). Making the most of story problems, Teaching Children Mathematics, 16,5, 260-266.
- 3. Ashkenazi, S., Mark-Zigdon, N., & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?. Developmental Science, 16(1), 35-46.
- 4. Ashkenazi, S., Mark-Zigdon, N., & Henik, A. (2009). Numerical distance effect in developmental dyscalculia. Cognitive Development, 24(4), 387-400.
- 5. Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W., Swigart, A. G., & Menon, V. (2013). Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51(11), 2305-2317.
- of power mathematical Fostering .(2001) .J.A ,Baroody & .M.L , Isenbarger .6 children with behavioral difficulties: The case of Carter, Teaching Children Mathematics, 7, 468-471.
- R Grade Exploring .(2021) .I .C ,Okeke & ,.S .C ,Ugwuanyi ,.L .S ,Mothibeli-Baloyi .7 Teachers' Mathematics Curriculum Practices and Strategies for Improvement: Implications for Physics Teaching. Cypriot Journal of Educational Sciences, 16(1), 238-250.
- 8. Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for research in mathematics education, 29(1), 41-62. potential 'students Unleashing :mindsets Mathematical .(2015) .J ,Boaler . .9 through creative math, inspiring messages and innovative teaching. John Wiley & Sons.
- 10. Boaler, J. (2013, March). Ability and mathematics: The mindset revolution that is reshaping education. Forum.
- 11. Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. Multiple perspectives on mathematics teaching and learning, 1, 171-200.
- 12. Wetzel, B. Smith, S.W. &. Brownell, M.T (2001). How can I help students with learning disabilities in algebra? Intervention in School and Clinic. 37, 2, 101-104.
- 13. Bryant, D.P., Bryant. B.R., Gerstern, R. Scammacca, N. & Chaves, M.M. (2008) Mathematics intervention for first- and second-grade students with mathematics difficulties: the effects of tier 2 intervention delivered as booster lessons, Remedial and Special Education;; 29, 1, 20- 32.
- 14. Colomé, À., & Noël, M. P. (2012). One first? Acquisition of the cardinal and ordinal uses of numbers in preschoolers. Journal of Experimental Child Psychology, 113(2), 233-247.
- a as strategies comparison fraction 'Students .(2009) .A ,Roche & ,.M .D ,Clarke .15 window into robust understanding and possible pointers for instruction. Educational Studies in Mathematics, 72(1), 127-138.
- The :math early teaching and Learning .(2020) .J ,Sarama & ,.H .D ,Clements .16 learning trajectories approach. Routledge.
- 17. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55.

- 18. Dweck, k., From needs to goals and representations: Foundations for a unified theory of motivation, personaologlity, and development., Psychical Review 124, rev0000082/10.1037 :doi 719-689 'עמ', 2017-11
- 19. Diopoulos, G. (2002). Anchored learning in context, Mathematics Teaching in the Middle School, 1, 16-21.
- 20. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical cognition, 1(1), 83-120.
- 21. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506.
- in connections Making (2008) .H .Fien & .J .D , Chard , .R .L .Geller-Ketterlin .22 mathematics: conceptual mathematics intervention for low-preforming students. Remedial and Special Education;; 29, 1, 33-45.
- 23. D'Amato, R. C., Crepeau-Hobson, F., Huang, L. V. & Geil, M. (2005) Ecological neuropsychology an alternative to the deficit model for conceptualizing and serving students with Learning Disabilities, Neuropsychology Review, 15, 2, 97-103.
- 24. Karp, k. & Howell, P. (2004) Building responsibility for learning in students with special needs, Teaching Children Mathematics, 11 3,118-126.
- 25. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of experimental child psychology, 103(1), 17-29.
- 26. Kadosh, R. C., Henik, A., Rubinsten, O., Mohr, H., Dori, H., Van De Ven, V., ... & Linden, D. E. (2005). Are numbers special?: The comparison systems of the human brain investigated by fMRI. Neuropsychologia, 43(9), 1238-1248. :scale to teams support instructional Bringing (2006) .C .M ,Glew .F .J ,Kovaleski .27
- Implications of the Pennsylvania experience, Remedial and Special Education, 27 1, 16-26.
- 28. Bottge, B. A., Rueda, E., Serlin, R. C, Hung, Y. & Kwon J. M.(2007) Shrinking achievement differences with anchored math problems: challenges and possibilities . The Journal of Special Education. 41, 1, 31-50
- 29. Kelly, R.R. & Lang, H.G. (2003) Mathematics word problem solving for deaf students: a survey of practice in grades 6-12, Journal of Deaf Studies and Deaf Education, 8, 104-119.
- 30. Meert, G., Grégoire, J., & Noël, M. P. (2009). Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. Quarterly Journal of Experimental Psychology, 62(8), 1598-1616.
- 31. Noël, M. P. (2005). Finger gnosia: a predictor of numerical abilities in children?. Child Neuropsychology, 11(5), 413-430.
- 32. Noël, M. P. (2009). Counting on working memory when learning to count and to add: A preschool study. Developmental Psychology, 45(6), 1630.
- -short of Involvement .(2001) .X ,Seron & ,.A ,Aubrun ,.M ,Désert ,.P .M ,Noël .33 term memory in complex mental calculation. Memory & cognition, 29(1), 34-42.
- 34. Perron-Jones, J& Jitendra, A., Di Pipi, C. M. (2002) An exploratory study of schema-based word-problem--solving instruction for middle school students with learning disabilities: An emphasis on conceptual and procedural understanding The Journal of Special Education, 36, 1, 23-38.

- 35. Piazza, M. (2011). Neurocognitive start-up tools for symbolic number representations. Space, time and number in the brain, 267-285. in comparison Magnitude .(2004) .P .M ,Noël & ,.E ,Palmers ,.L ,Rousselle .36 preschoolers: What counts? Influence of perceptual variables. Journal of experimental child psychology, 87(1), 57-84.
- 37. Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395.
- 38. Revell, S. M. H., & McCurry, M. K. (2013). Effective pedagogies for teaching math to nursing students: A literature review. Nurse Education Today, 33(11), 1352-1356.
- of learning 'students needs special Scaffolding .(2008) .S .P ,Moyer & ,.M .J ,Suh .39 fraction equivalence using virtual manipulatives. Proceedings of the International Group for the Psychology of Mathematics Education, 4, 297-304.
- 40. Vaidya, S.R. (2004) Understanding dyscalculia for teaching, Education. 124, 4, 717-721
- Winebrenner, S. (2003). Teaching strategies for twice-exceptional students. Intervention in School & Clinic, 38, 3, 131-138.
- 41. Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental medicine & child neurology, 49(11), 868-873.
- 42. **Muir, T., Beswick. K. & Williamson, J. (2008) I'm not very good at solving problems": An exploration of students' problem solving behaviours, The Journal of Mathematical Behavior, doi:10.1016/j.jmathb.2008.04.003 student change that strategies Teaching :math love to Learning .(2010) .J ,Willis .43 attitudes and get results. ASCD.

Course/Module evaluation:

End of year written/oral examination 0 % Presentation 20 % Participation in Tutorials 10 % Project work 50 % Assignments 20 % Reports 0 % Research project 0 % Quizzes 0 % Other 0 %

Additional information:

Since these are clinical courses based on meetings with patients - recordings should not be allowed in any way.